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This session aims to provide an introduction to interpreting and
communicating statistical models using graphics.

Effect displays (accessible through John Fox’s effects package) are used
to illustrate models using tables or graphs which represent terms in a
model and are designed to make the task of interpreting them much
simpler.

These displays are quick and easy to produce and manipulate and
circumvent many of the problems analysts typically have with interpreting
statistical models and with communicating them to wider audiences.

Their ease of use and the intuitive way they illustrate relationships also
makes them ideal tools for teaching and learning.
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A basic linear
regression model
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A linear regression model predicting the quality of witness statements...

glm(formula = QUALITY ~ MATURITY + LOCATION + GENDER + AGE,

family = gaussian(identity),

data = witness)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.1805 3.1627 15.550 < 2e-16 ***

MATURITY 3.1232 1.2820 2.436 0.0177 *

LOCATION[S.Formal] -2.5990 1.7464 -1.488 0.1417

LOCATION[S.Home] -0.9194 1.7480 -0.526 0.6008

LOCATION[S.School] -1.4372 1.8311 -0.785 0.4355

GENDERmale -2.5332 2.1389 -1.184 0.2407

AGE8-9 years 10.7861 2.1535 5.009 4.7e-06 ***

It can be difficult to appreciate the important relationships in the model
(particularly with categorical explanatory variables) and communicate
these results to non-specialists.
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The effects package allows the information shown in the regression
output above to be displayed using graphics...

library(effects)

plot(allEffects(witness.01))
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Effect Display: QUALITY ∼ MATURITY + LOCATION + GENDER + AGE

MATURITY effect plot
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The effect display gives the same information as the regression output,
but provides it in a more intuitive way and also provides information that
is hidden in the original output...

In particular, the default reference category (the special interview room)
may not be an ideal choice for this analysis (treatment contrasts may be
more informative).
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A linear regression model
with a three-way interaction
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A linear regression model predicting the quantity of ice cream sold...

glm(formula = Consumption ~ Price * Temperature * Income,

family = gaussian(identity),

data = iceCREAM)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.665656 7.970792 2.593 0.016613 *

Price -76.452035 29.171664 -2.621 0.015610 *

Temperature -0.757488 0.180361 -4.200 0.000370 ***

Income -0.250381 0.092277 -2.713 0.012692 *

Price:Temperature 2.818488 0.664467 4.242 0.000334 ***

Price:Income 0.935945 0.337905 2.770 0.011174 *

Temperature:Income 0.009276 0.002130 4.355 0.000253 ***

Price:Temperature:Income -0.034391 0.007858 -4.377 0.000240 ***

It challenging to interpret the three-way interaction using this output...

Graeme D. Hutcheson Effect Displays



A linear regression model predicting the quantity of ice cream sold...

glm(formula = Consumption ~ Price * Temperature * Income,

family = gaussian(identity),

data = iceCREAM)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.665656 7.970792 2.593 0.016613 *

Price -76.452035 29.171664 -2.621 0.015610 *

Temperature -0.757488 0.180361 -4.200 0.000370 ***

Income -0.250381 0.092277 -2.713 0.012692 *

Price:Temperature 2.818488 0.664467 4.242 0.000334 ***

Price:Income 0.935945 0.337905 2.770 0.011174 *

Temperature:Income 0.009276 0.002130 4.355 0.000253 ***

Price:Temperature:Income -0.034391 0.007858 -4.377 0.000240 ***

It challenging to interpret the three-way interaction using this output...

Graeme D. Hutcheson Effect Displays



A linear regression model predicting the quantity of ice cream sold...

glm(formula = Consumption ~ Price * Temperature * Income,

family = gaussian(identity),

data = iceCREAM)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.665656 7.970792 2.593 0.016613 *

Price -76.452035 29.171664 -2.621 0.015610 *

Temperature -0.757488 0.180361 -4.200 0.000370 ***

Income -0.250381 0.092277 -2.713 0.012692 *

Price:Temperature 2.818488 0.664467 4.242 0.000334 ***

Price:Income 0.935945 0.337905 2.770 0.011174 *

Temperature:Income 0.009276 0.002130 4.355 0.000253 ***

Price:Temperature:Income -0.034391 0.007858 -4.377 0.000240 ***

It challenging to interpret the three-way interaction using this output...

Graeme D. Hutcheson Effect Displays



Effect displays are particularly useful for interpreting interactions and can
be easily plotted using the pull-down menu in the Rcmdr or by using the
command...

plot(allEffects(iceCREAM.01))
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Effect Display: consumption ∼ price*income*temperature

Price*Temperature*Income effect plot

Price

C
on

su
m

pt
io

n

−0.2
 0.0
 0.2
 0.4
 0.6

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

−0.2
 0.0
 0.2
 0.4
 0.6

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Temperature
Income

0.2600.2650.2700.2750.2800.2850.290

Temperature
Income

Graeme D. Hutcheson Effect Displays



The effect display is difficult to interpret as there are too many panels.
This can be easily remedied by defining the number of panels using the
"xlevels=" function. The following defines 4 panels for temperature
(40, 50, 60 and 70) and 3 panels for income (85, 90 and 95).

plot(allEffects(iceCREAM.01,

xlevels=list(

Temperature=seq(40,70,10),

Income=seq(85,95,5))

))
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Effect Display: consumption ∼ price*income*temperature

Price*Temperature*Income effect plot
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Interpreting the three-way interaction is now much easier.

At high temperatures, those with high incomes are able to exercise a
choice about whether they buy ice cream. This choice is based, partly, on
the price.

This relationship is very hard to identify using the original model output.
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HINT...

The layout of the graphs (i.e., whether they are plotted in a 3-by-4
matrix, or a 1-by-12 matrix) is dictated by a number of rules which can
be defined by the user.

The layout can, however, be easily manipulated by changing the
dimensions of the R-studio output window (the plot window).

For example, to plot just the top 3 panels (when income=95), all side by
side, change the dimensions of the plot window so that it is short and
wide and then run the command...

plot(allEffects(iceCREAM.01,

xlevels=list(

Temperature=seq(40,70,10),

Income=seq(95,95,0))

))
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Effect Display: consumption ∼ price*income*temperature

Price*Temperature*Income effect plot
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Note: it is easy to edit the graphic to improve the presentation (consult the effects

documentation or look at the tikzDevice package).
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A generalised linear logit
regression model
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A logistic regression model predicting the probability of being released
using the Arrests dataset from the effects package (data(Arrests)).

glm(formula = released ~ checks + colour + sex + yearCAT,

family = binomial(logit),

data = Arrests)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.55599 0.19659 7.915 2.48e-15 ***

checks -0.40367 0.02516 -16.044 < 2e-16 ***

colour[T.White] 0.54187 0.08183 6.622 3.54e-11 ***

sex[T.Male] 0.09156 0.14711 0.622 0.5337

yearCAT[T.1998] 0.34079 0.14471 2.355 0.0185 *

yearCAT[T.1999] 0.36675 0.13958 2.627 0.0086 **

yearCAT[T.2000] 0.57144 0.13926 4.103 4.07e-05 ***

yearCAT[T.2001] 0.33515 0.13688 2.448 0.0143 *

yearCAT[T.2002] 0.17366 0.19278 0.901 0.3677

This is not easy to interpret, particularly as the estimates are provided in
logits.
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Effect Display: released ∼ checks + colour + gender + year

plot(allEffects(arrests.01))
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Effect Display: released ∼ checks + colour + gender + year

plot(allEffects(arrests.01), rescale.axis=FALSE)
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Effect Display: released ∼ checks + colour + gender + year

plot(allEffects(arrests.01), rescale.axis=FALSE, ylim=c(0.5,1))
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A particularly useful feature of the effects package is being able to define
values of the explanatory variables.

With regards to the variable colour, the effect displays default is to
provide predictions that represent the average mix of black and white
people in the sample (a factor is fixed ”at it’s proportional distribution in
the data”; Fox, 2003).

Whist this is useful for describing the model, it can also be useful to
derive predictions for black and white people individually.

This can be achieved using the "given.values = " option. To obtain
predictions for white people, set the proportion of white people to 1. To
obtain predictions for black people, set the proportion of white people to
0.

Note: the defined category cannot be the reference category.

Graeme D. Hutcheson Effect Displays



A particularly useful feature of the effects package is being able to define
values of the explanatory variables.

With regards to the variable colour, the effect displays default is to
provide predictions that represent the average mix of black and white
people in the sample (a factor is fixed ”at it’s proportional distribution in
the data”; Fox, 2003).

Whist this is useful for describing the model, it can also be useful to
derive predictions for black and white people individually.

This can be achieved using the "given.values = " option. To obtain
predictions for white people, set the proportion of white people to 1. To
obtain predictions for black people, set the proportion of white people to
0.

Note: the defined category cannot be the reference category.

Graeme D. Hutcheson Effect Displays



A particularly useful feature of the effects package is being able to define
values of the explanatory variables.

With regards to the variable colour, the effect displays default is to
provide predictions that represent the average mix of black and white
people in the sample (a factor is fixed ”at it’s proportional distribution in
the data”; Fox, 2003).

Whist this is useful for describing the model, it can also be useful to
derive predictions for black and white people individually.

This can be achieved using the "given.values = " option. To obtain
predictions for white people, set the proportion of white people to 1. To
obtain predictions for black people, set the proportion of white people to
0.

Note: the defined category cannot be the reference category.

Graeme D. Hutcheson Effect Displays



A particularly useful feature of the effects package is being able to define
values of the explanatory variables.

With regards to the variable colour, the effect displays default is to
provide predictions that represent the average mix of black and white
people in the sample (a factor is fixed ”at it’s proportional distribution in
the data”; Fox, 2003).

Whist this is useful for describing the model, it can also be useful to
derive predictions for black and white people individually.

This can be achieved using the "given.values = " option. To obtain
predictions for white people, set the proportion of white people to 1. To
obtain predictions for black people, set the proportion of white people to
0.

Note: the defined category cannot be the reference category.

Graeme D. Hutcheson Effect Displays



A particularly useful feature of the effects package is being able to define
values of the explanatory variables.

With regards to the variable colour, the effect displays default is to
provide predictions that represent the average mix of black and white
people in the sample (a factor is fixed ”at it’s proportional distribution in
the data”; Fox, 2003).

Whist this is useful for describing the model, it can also be useful to
derive predictions for black and white people individually.

This can be achieved using the "given.values = " option. To obtain
predictions for white people, set the proportion of white people to 1. To
obtain predictions for black people, set the proportion of white people to
0.

Note: the defined category cannot be the reference category.

Graeme D. Hutcheson Effect Displays



To get effect displays for white people...

plot(allEffects(arrests.01,

given.values = c(colourWhite = 1)),

rescale.axis = FALSE,

ylim = c(0.65,0.95),

main = "White")

and for black people...

plot(allEffects(arrests.01,

given.values = c(colourWhite = 0)),

rescale.axis = FALSE,

ylim = c(0.65,0.95),

main = "Black")
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The ability to define categories enables animations to be constructed. For
example, to animate what happens across a number of years, we simply
need to define the years.

For 1997...

plot(allEffects(arrests.01,

given.values = c(yearCAT1998 = 0, yearCAT1999 = 0,

yearCAT2000 = 0, yearCAT2001 = 0,

yearCAT2002 = 0)),

rescale.axis = FALSE, ylim = c(0.65,0.95), main = "1997")

For 1998...
plot(allEffects(arrests.01,

given.values = c(yearCAT1998 = 1)),

rescale.axis = FALSE, ylim = c(0.65,0.95), main = "1998")

For 1999...
plot(allEffects(arrests.01,

given.values = c(yearCAT1999 = 1)),

rescale.axis = FALSE, ylim = c(0.65,0.95), main = "1999")
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The main difference highlighted in the animation appears to be between
1997 and 1998. This is something that is quite hidden in the standard
output...
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A Poisson model
with interactions
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checks is an interesting variable to model.

checks is a count variable and can be modelled using a Poisson
regression model (log-linear).

The model shown below includes the variables age, colour, yearCAT
and sex, including interactions between age and colour and between
colour and yearCAT.

The standard output is difficult to interpret and provides limited
information about the relationships in the model. The effect displays, on
the other hand, are easy to understand and provide a greatly enhanced
picture of the data. They even suggest an interesting interaction between
colour and yearCAT that is not evident in the standard output.
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Poisson Model: checks ∼ age*colour + colour*year + gender

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.909e-01 9.448e-02 3.079 0.00208 **
age 3.919e-03 2.180e-03 1.798 0.07222 .
colour[T.White] -5.351e-01 9.882e-02 -5.415 6.13e-08 ***
yearCAT[T.1998] -5.264e-02 7.619e-02 -0.691 0.48966
yearCAT[T.1999] 7.005e-03 7.479e-02 0.094 0.92538
yearCAT[T.2000] -7.169e-05 7.347e-02 -0.001 0.99922
yearCAT[T.2001] -6.767e-02 7.311e-02 -0.926 0.35462
yearCAT[T.2002] -3.251e-02 9.701e-02 -0.335 0.73751
sex[T.Male] 3.977e-01 4.692e-02 8.478 < 2e-16 ***
age:colour[T.White] 1.328e-02 2.621e-03 5.069 4.00e-07 ***
colour[T.White]:yearCAT[T.1998] -4.342e-02 9.165e-02 -0.474 0.63571
colour[T.White]:yearCAT[T.1999] -1.704e-01 8.927e-02 -1.909 0.05629 .
colour[T.White]:yearCAT[T.2000] -1.586e-01 8.756e-02 -1.811 0.07010 .
colour[T.White]:yearCAT[T.2001] -1.210e-01 8.770e-02 -1.380 0.16770
colour[T.White]:yearCAT[T.2002] -1.665e-01 1.212e-01 -1.374 0.16947

Type II tests
Response: checks

LR Chisq Df Pr(>Chisq)
age 108.406 1 < 2.2e-16 ***
colour 175.067 1 < 2.2e-16 ***
yearCAT 15.176 5 0.009637 **
sex 80.859 1 < 2.2e-16 ***
age:colour 26.308 1 2.911e-07 ***
colour:yearCAT 6.445 5 0.265274
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Effect Display: checks ∼ age*colour + colour*year + gender

plot(allEffects(arrests.02))
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Conclusions
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I Effect displays are easy to produce and often provide much clearer
and more detailed information than the standard output.

I Models can be interpreted without reference to logits, contrast
coding, reference categories, type II or III ANOVA tests, lower-order
interactions, or model-fit statistics.

I Effect displays can be applied to all generalized linear models; these
include the ‘standard’ t-test, ANOVA, ANCOVA, Mann-Whitney,
Friedman, chi-square, log-linear, proportional-odds, multinomial logit
and mixed-effect models.

I Effect displays enable models to be communicated to non-specialists
and also encourage dialogue about the ‘meaning’ of models.
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